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ABSTRACT: A simple equation is derived for the time dependence of the bubble radius
for the diffusion-induced slow growth or dissolution of a spherical gas bubble in a
viscoelastic fluid of infinite extent. The constitutive equation for a first-order fluid and
a surface–volume perturbation scheme are used to develop the solution, and the effect
of viscosity level and elasticity on the bubble dynamics is considered. q 1998 John Wiley &
Sons, Inc. J Appl Polym Sci 67: 2093–2103, 1998
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INTRODUCTION rated into the transport problem. Barlow and
Langlois5 considered bubble growth in a Newton-
ian fluid using the coupled momentum and diffu-A number of important problems in chemical and
sion equations. Street,6 Folger and Goddard,7 andpolymer processes involve the diffusion-induced
Papanastasiou et al.8 analyzed the growth and/growth or dissolution of spherical drops or bub-
or collapse of bubbles in viscoelastic fluids in thebles. Consequently, there has been a relatively
absence of mass transfer effects. Zana and Leal,9large number of investigations concerned with the
Han and Yoo,10 and Arefmanesh and Advani11growth or dissolution of spherical particles in in-
studied the growth or dissolution of bubbles inviscid, viscous Newtonian, and viscoelastic non-
viscoelastic fluids by incorporating both hydrody-Newtonian fluids. For the case of inviscid fluids,
namic and mass transfer effects in the analysisa similarity transformation can be used to con-
of the transport process. In these investigations,struct an exact analytical solution1 for the growth
a variety of differential and integral constitutiveof a sphere from a zero initial radius. However,
equations were utilized. In all of the above stud-in general, investigation of this nonlinear moving
ies, the momentum equations or the coupled diffu-boundary problem necessarily involves the con-

struction of asymptotic analytical solutions or the sion and momentum equations were, for the most
development of numerical solutions. For example, part, solved using numerical methods.
perturbation solutions have been derived for both In some cases, the velocity of the bubble inter-
the slow2 and rapid3 growth or dissolution of face is small compared to the rate of growth of the
spherical particles. Many of the approximate ana- concentration boundary layer, and it is possible
lytical solutions to the transport equations de- to derive relatively simple results by limiting the
scribing the diffusion-induced growth or dissolu- analysis to slowly moving interfaces. Previously,
tion of an isolated sphere in an inviscid fluid are it was shown2 that it is possible to construct a
discussed and evaluated elsewhere.4 perturbation solution for spherical moving bound-

The analysis of course becomes more compli- ary problems in inviscid fluids for the limiting
cated when hydrodynamic resistance is incorpo- case of slow growth or dissolution rates. It is im-

portant to emphasize here that it is the concentra-
tion driving force for bubble growth or dissolution,
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and not the diffusivity, which determines whether
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2094 VRENTAS AND VRENTAS

rapid. This will be evident when the appropriate infinite liquid phase, and the origin of the co-
ordinate system is the bubble center, whichdimensionless groups are defined below. A similar

perturbation approach should be applicable to the is at rest.
5. There are no chemical reactions in the infiniteanalysis of the slow growth or dissolution of bub-

bles in viscous Newtonian and viscoelastic non- outer phase.
6. All gravitational effects are negligible, and itNewtonian fluids. In addition, there is an addi-

tional simplification in the analysis of spherical is assumed that surface tension effects are
small for the system of interest.moving boundary problems for slowly moving in-

terfaces in viscoelastic fluids. Since the diffusion- 7. The bubble is a one-component system with
induced growth or collapse of a bubble in a fluid uniform density rP , uniform pressure pg , and
involves an unsteady flow field in a fluid initially a radial velocity field. The gas in the bubble
at rest, it should be possible, in certain cases, to is considered to be an inviscid fluid.
use the constitutive equation for a first-order fluid 8. The diffusion process in the outer liquid
to describe the viscoelastic material.12 The first- phase is adequately described by a linear con-
order fluid represents the first-order term of a re- stitutive equation (Fickian diffusion), and
tarded motion expansion for a linear viscoelastic the binary mutual diffusion coefficient, D , in
fluid, valid for unsteady flows of fluids that were the outer phase is effectively a constant.
initially at rest. The utilization of the constitutive 9. The initial solute concentration in the outer
equation for a first-order fluid greatly simplifies liquid phase, r10 , and the initial pressure, p0 ,
the analysis of hydrodynamic effects in the growth are uniform. The initial bubble density corre-
or dissolution process. sponding to p0 is rP 0 , and the initial bubble

The principal objective of this article is to de- radius is R0 .
rive a simple equation for the time dependence of 10. There exists concentration equilibrium at the
the bubble radius for the diffusion-induced slow phase boundary, and this phase equilibrium
growth or dissolution of a spherical gas bubble in is described by the following linear relation-
a viscoelastic fluid of infinite extent. The assump- ship:
tions used in the problem formulation are listed in
the second section of the article, and the equations r1(R , t ) Å Kpg (1)
describing the coupled mass transfer–hydrody-
namic problem are presented in the third section. Here, r1(r , t ) is the mass density of solute in
The perturbation solution for a slowly moving in- the liquid phase, R is the radius of the bubble,
terface is developed in the fourth section of the t is time, r is the radial position variable in
article, and the basic predictions of the theory are spherical coordinates, and K is a Henry’s law
discussed in the final section of the article. constant. The solute concentration corre-

sponding to the initial pressure p0 is r1E .
11. The incompressible, effectively pure liquid in

PROBLEM FORMULATION the outer phase is described by the constitu-
tive equation for a first-order fluid, valid for

The following assumptions are used to formulate unsteady flows of fluids that are rest for t õ
equations for the growth or dissolution of a gas 0. For a first-order fluid, the extra stress SJ is
bubble in an infinite sea of a viscoelastic fluid. given by the expression

1. The effect of heat released or absorbed during SJ Å h0 f (t )AJ 1 (2)
phase change is considered negligible so that
the transport process is effectively isother- where h0 is the viscosity of the fluid at zero
mal. shear rate, and AJ 1 is the first Rivlin–Erick-

2. The velocity field in the outer fluid is purely son tensor evaluated at time t . Also,
radial, and the concentration field is spheri-
cally symmetric.

3. The outer phase consists of a dissolved gas
and liquid, and the amount of dissolved gas f (t ) Å 1 0

*
`

t
G (s )ds

h0
(3)

is small enough so that the density r of the
outer phase is essentially constant.

4. The bubble is a perfect sphere isolated in an where G (s ) is the shear stress relaxation
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SLOW BUBBLE GROWTH AND DISSOLUTION 2095

modulus of linear viscoelasticity. A simple, ÇrvJ Å 0 (10)
special expression for G (s ) is

by the continuity equation for the bubble phase,
G (s ) Å ale0s /l (4)

ÌrP
Ìt
/ Çr(rP vP J ) Å 0 (11)

where a and l are constants for a given mate-
rial. For this case,

by the equation of motion for an incompressible
f (t ) Å 1 0 e0t /l (5) first-order fluid,

and l can be identified as a characteristic re-
rS ÌvJ
Ìt
/ vJ rÇvJ D Å 0Çp / h0 f (t )Ç2vJ (12)laxation time for the fluid. Justification for

using this constitutive equation for slow
growth or dissolution processes is discussed and by the species continuity equation for the dis-
below. solved gas in the outer liquid phase,

12. The density of the gas bubble is much smaller
than the liquid density so that Ìr1

Ìt
/ vJ rÇr1 Å DÇ2r1 (13)

rP 0

r
à 0 (6)

In these equations, vJ and vP J are the velocity vectors
in the liquid and bubble phases, respectively, p is

13. Pressure changes in the liquid phase the pressure in the liquid phase, and gravitational
caused by inertia effects are small. As will be effects have been neglected. Similarly, the trans-
evident below from the dimensionless forms port process at the phase interface is described by
of the transport equations, the magnitude of the overall jump mass balance,
this effect is governed by the dimensionless
group NI , as follows.

rP (vP J rnJ * 0 UJ *rnJ *) Å r(vJ rnJ * 0 UJ *rnJ *) (14)

by the jump species mass balance for the polymer,NI Å
rD2

p0R2
0

(7)

rP 2(vP J 2rnJ *0UJ *rnJ *)Å r2(vJ 2rnJ *0UJ *rnJ *) (15)
For most cases of interest,

and by the jump linear momentum equation,
NI à 0 (8)

rP vP J (vP J rnJ * 0 UJ *rnJ *) 0 TOJ rnJ *
14. The gas in the bubble is an ideal gas so

Å rvJ (vJ rnJ * 0 UJ *rnJ *) 0 TJ rnJ * (16)that, at constant temperature,

In these equations, nJ * is the unit normal vectorrP

rP 0
Å pg

p0
(9) at the phase interface pointing into the liquid

phase, UJ * is the velocity of the phase boundary,
r2 and rP 2 are the polymer mass densities in the
liquid and bubble phases, vJ 2 and vP J 2 are the veloci-

FORMULATION OF EQUATIONS ties of the polymer in the liquid and bubble
phases, and TJ and TOJ are the total stress tensors
in the liquid and bubble phases, respectively. AllThe above assumptions can now be used as the

basis for the derivation of specific equations for of the quantities in eqs. (14) – (16) must, of
course, be evaluated at the phase interface.the transport process from appropriate equations

of change in the bulk fluids and from appropriate The transformation of these equations to spe-
cific results for the present problem is facilitatedjump conditions at the phase boundary. The

transport process in the bulk fluids is described if the following dimensionless variables are intro-
duced.by the overall continuity equation in the liquid,
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2096 VRENTAS AND VRENTAS

Evaluation of eq. (14) at the interface and substi-
t* Å Dt

R2
0

(17) tution of eq. (26) produce the following result for
the liquid phase velocity at the phase boundary:

r* Å r
R0

(18)

v (R , t ) Å 0 RrP 0

3r
drP
dt
/ dR

dt S1 0 rP rP 0

r D (29)
R* Å R

R0
(19)

Another equation at the phase boundary can be
derived by evaluating eq. (15) at the interface andrP * Å rP

rP 0
(20)

by using eqs. (1), (9), and (29):

v Å R0vr

D
(21)

CS
dR
dt
Å 0 R

3
dCS

dt
/ Na

Q S ÌC
Ìr DrÅR

(30)

vP Å R0vP r
D

(22)

Q Å
1 0 Csr1E

r

1 0 r1E

r

(31)
C Å r1 0 r10

r1E 0 r10
(23)

CS Å
r1(R , t )

r1E
(24)

Na Å
r(r1E 0 r10)
rP 0(r 0 r1E )

(32)

In these equations, vr and v̂r are the radial velocity For most cases of interest, eqs. (6) and (8) are
components in the liquid and bubble phases, re- valid, and eqs. (27) and (29) can be reduced to
spectively. In the dimensionless forms of the the following simplified forms:
transport equations, the asterisks will be dropped
for convenience.

CS Å 1 / 4NV f (t )
R

dR
dt

(33)Integration of eqs. (10) and (11) produces the
following results for the dimensionless velocity
field:

v (R , t ) Å dR
dt

(34)

v (r , t ) Å R2

r2 v (R , t ) (25) Consequently, the species continuity equation for
the dissolved gas, eq. (13), can be written as fol-
lows in dimensionless form:vP (R , t ) Å 0 R

3rP
drP
dt

(26)

ÌC
Ìt
/ R2

r2

dR
dt
ÌC
Ìr
Å Ì

2C
Ìr2 /

2
r
ÌC
Ìr

(35)Also, combination of an integrated form of eq. (12)
with eqs. (1), (2), (14), (16), and (25) gives the
following dimensionless expression: Furthermore, the appropriate boundary condi-

tions can be expressed as follows:

CS Å 1 / 4NV f (t )v (R , t )
R C (r , 0) Å 0 (36)

C (` , t ) Å 0 (37)
/ NIF0 (vP 0 v )Sv 0 dR

dt D
C[R (t ) , t ] Å 1 / r1E (CS 0 1)

r1E 0 r10
(38)

/ 2v
dR
dt
/ R

dv
dt
0 v2

2 GrÅR

(27) Also, the initial conditions for R and CS are simply

R (0) Å 1 (39)
NV Å

h0D
p0R2

0
(28)

CS (0) Å 1 (40)
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SLOW BUBBLE GROWTH AND DISSOLUTION 2097

The analysis of the bubble growth or dissolu- (33), and (35) – (40) and utilization of eqs. (44)
and (45) produce the following set of equationstion problem thus involves solving eqs. (30), (33),

and (35) – (40) for CS (t ) , R (t ) , and C (r , t ) . In for the lowest order perturbation result:
general, a numerical method must be used to
solve this nonlinear set of equations. However, for ÌC0

Ìt
Å Ì

2C0

Ìr2 / 2
r
ÌC0

Ìr
(46)the case of slow growth or dissolution, it is possi-

ble to formulate a perturbation method, and this
is considered in the next section. C0(r , 0) Å 0 (47)

C0(` , t ) Å 0 (48)

PERTURBATION SOLUTION C0(1, t ) Å 1 (49)

When the driving force for bubble growth or disso- C1
S (t ) Å 4NV f (t )

dR1

dt
(50)

lution is small [(r1E 0 r10) r 0], it follows from
eq. (32) that Na r 0. As Na r 0, it is evident from

C1
S (0) Å 0 (51)eqs. (30) and (33) that R (t ) Å 1 so that there is

no change in the initial bubble radius for Na r dR1

dt
Å 0 1

3
dC1

S

dt
/ S ÌC0

Ìr D
rÅ1

(52)0. Hence, a slow growth or dissolution process is
simply one for which the dimensionless group Na

R1(0) Å 0 (53)is small, and it is thus convenient to develop a
parameter perturbation solution to the transport
problem using Na as the small parameter. Conse- Equations (46) – (53) can thus be used to deter-
quently, we propose the following series ex- mine the lowest-order perturbation series func-
pansions for the bubble growth or dissolution tions, C0(r , t ) , C1

S (t ) , and R1(t ) .
problem: The solution to eqs. (46) – (49) is simply

C (r , t ) Å C0(r , t ) / NaC1(r , t ) / rrr (41)

CS (t ) Å 1 / NaC1
S (t ) / rrr (42)

C0 Å
erfcS r 0 1

2t1/2 D
r

(54)
R (t ) Å 1 / NaR1(t ) / rrr (43)

and the following derivative can be used in eq.It is evident that it is both the time dependence
(52):of the position of the bubble surface and the basic

nonlinearity of the equation set that take the
problem out of the exactly solvable class. Hence, S ÌC0

Ìr D
rÅ1

Å 01 0 1
p1/2t1/2 (55)it is convenient to utilize a surface–volume per-

turbation scheme to develop a solution to the
transport problem. The following Taylor series

Also, integration of eq. (52), utilization of eqs.expansions can be used to eliminate quantities
(51) and (53), and substitution of eq. (50) pro-evaluated at the phase interface:
duce the following ordinary differential equation
for R1(t ) :Ci[R (t ) , t ] Å Ci (1, t )

/ S ÌCi

Ìr DrÅ1

(R 0 1) / rrr (44) dR1

dt
/ 3R1

4NV [1 0 exp(0tNE) ]

Å 3F (t )
4NV [1 0 exp(0tNE ) ]

(56)S ÌCi

Ìr DrÅR

Å S ÌCi

Ìr DrÅ1

Here,
/ S Ì2Ci

Ìr2 D
rÅ1

(R 0 1) / rrr (45)

F (t ) Å *
t

0
S ÌC0

Ìr D
rÅ1

dt * Å 0t 0 2t1/2

p1/2 (57)
Substitution of eqs. (41) – (43) into eqs. (30),
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2098 VRENTAS AND VRENTAS

and we have used the following dimensionless rived from eq. (60) for several important limiting
cases. For an inelastic material (NE r ` ) , eq. (60)form of eq. (5):
reduces to the following form:

f (t ) Å 1 0 exp(0tNE ) (58)
R1(t )

NE Å
R2

0

Dl
(59)

Å
3 expS0 3t

4NV
D

4NV
*

t

0
F (t )expS 3t

4NV
Ddt (62)The solution to eqs. (53) and (56) can be ex-

pressed as follows:

and integration yields the following result for
cases in which elastic effects can be neglected:

R1(t ) Å
3 expS0 3t

4NV
D

4NV [1 0 exp(0tNE ) ]b

R1(t ) Å 0St 0 4NV

3 D
0 4NV

3
expF0 3t

4NV
G1*

t

0

F (t )expS 3t
4NV

D [10 exp(0tNE) ]bdt

[10 exp(0tNE ) ]
(60)

b Å 3
4NVNE

(61) 0 2t1/2

p1/2 /
2

p1/2 expF0 3t
4NV

G
Hence, eqs. (43) and (60) give a relatively simple

1 *
t1/2

0
expF 3h2

4NV
Gdh (63)expression for the bubble radius, R (t ) , valid for

small Na and for any values of NV and NE . The
dimensionless group NV characterizes the impor-

For NV Å 0, we recover the well-known result fortance of viscous effects in the bubble growth or
growth or dissolution in an inviscid outer liquid:bubble dissolution process; for an inviscid fluid,

NVÅ 0. The dimensionless group NE characterizes
the importance of fluid elasticity; for an inelastic R (t ) Å 1 / NaF0t 0 2t1/2

p1/2 G (64)
material, l r 0 and NE r ` .

The above result for R1(t ) , of course, represents
For bubble growth or dissolution in very viscousthe lowest-order perturbation series result for the
materials (large NV ), the following result is validbubble radius, and higher-order results can be de-
for (3t /4NV ) ! 1:rived with a significant increase in the labor in-

volved. In addition, it has been shown that the
perturbation expansion for slow growth or disso- R (t ) Å 1 / 3Na

4NV
F0 t2

2
0 4t3/2

3p1/2G (65)
lution in an inviscid outer liquid exhibits singular
behavior at large times.2 Although the zero-order
solution is well behaved for all time, the first-or- Furthermore, for bubble growth or dissolution in
der correction is unbounded at large times, and very elastic materials (NE r 0), which are also
the perturbation expansion is not uniformly valid. very viscous (large NV ), the following result is
In fact, there is singular behavior in both space valid for (3t /4NV ) ! 1 and tNE ! 1:
and time, and a space–time matching scheme
has to be developed to form a uniformly valid com-
posite solution. Here, we present only the zero- R (t ) Å 1 0 3

4
Na

t

SNENV /
3
4Dorder result, which will be useful for sufficiently

small Na .
Evaluation of R (t ) requires only a numerical

integration of the integral in eq. (60). This is a
/ 2t1/2

p1/2SNENV

2
/ 3

4D
(66)relatively simple procedure, although it is neces-

sary to handle an integrable singularity at the
lower limit. Also, some simpler results can be de-
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SLOW BUBBLE GROWTH AND DISSOLUTION 2099

It is reasonable to expect that this equation ß 1 and for dimensionless times given by eq. (68)
for bubble dissolution and by eq. (67) for bubbleshould describe at least the early stages of slow

bubble growth or dissolution in elastic, viscous growth. For an inelastic liquid (NE r ` ) , the re-
striction for bubble dissolution is still eq. (68),molten polymers.

As noted previously, the basic perturbation re- but, for bubble growth, eq. (67) is replaced by
eq. (69).sult, eqs. (43) and (60), is valid for sufficiently

small Na for all values of NV and NE . Equations Calculations carried out using an inviscid liq-
uid phase4 suggest that the proposed solution can(63) – (66) are just simpler results, which can be

obtained by introducing restrictions on NV and be used to describe a significant fraction of the
bubble dissolution process and a time period forNE . We conclude this section by stating restric-

tions on the applicability of the proposed result, the bubble growth process during which signifi-
cant bubble growth has occurred. Unfortunately,eqs. (43) and (60). This result is restricted some-

what because it is based on two simplifications. however, the first-order fluid can be used to de-
scribe only a small part of a bubble growth pro-First, the constitutive equation for a first-order

fluid is used to describe the viscoelastic behavior cess, which involves a 200-fold increase in the
bubble radius.10 Even though the first-order fluidof the liquid. As noted above, the first-order fluid

can be regarded as a material described by the can not be used to describe a bubble growth pro-
cess with a large increase in the bubble radius, itfirst-order term of a retarded motion expansion

for a linear viscoelastic fluid, and it is restricted is evident from the above perturbation solution
that there is another possibility for determiningto unsteady flows generated from the rest state.

Since the unsteady bubble growth or dissolution the radius–time behavior for very elastic fluids
(NE r 0). At this limit, it is clear that eq. (66)problem represents a flow field that is at rest for

t õ 0, the first-order fluid should describe the vis- reduces to eq. (64), and, consequently, the ra-
dius–time behavior for bubble growth or dissolu-coelasticity of the liquid phase for an appropriate

range of deformation conditions. It has been tion in a very elastic first-order fluid can be esti-
mated using an inviscid analysis. The various so-shown recently13 that the first-order fluid will pro-

vide adequate predictions for the stress field for lutions that are available at the inviscid limit4

can thus be utilized. It has been shown else-bubble growth or dissolution when
where13 that this result is also valid for more gen-
eral viscoelastic fluids, namely, integral viscoelas-tÉNaÉ ß 1 (67)
tic materials. If we define the ratio u by the expres-
sionHence, the first-order fluid can be used even when

ÉNaÉ is large if t is sufficiently small. The second
simplification is the utilization of a perturbation

u Å NENVÉNaÉ

NE / ÉNaÉ
(70)method to derive a solution to the problem. The

perturbation solution should be applicable when
ÉNaÉ is sufficiently small. The parameter Na is

then it has been shown that the radius–time0.03 for the dissolution of oxygen in water and
curve for an integral viscoelastic model will ap-0.8 for the dissolution of carbon dioxide in water.
proach the inviscid limit whenTypically, ÉNaÉ is of the order of unity or less for

bubble–liquid systems of interest in polymer pro-
u ! 1 (71)cessing. For the range 0õ ÉNaÉß 1, the perturba-

tion solution produces good results when
It is thus evident from the above discussion that
simple rheological models can be used to describeNat ß 0.25 (68)
bubble growth or dissolution in elastic liquids for
two cases. The first-order fluid model [eqs. (43)for bubble dissolution and when
and (60)] can be used for 0õ ÉNaÉ ß 1 to provide
adequate results when eqs. (67) and (68) are sat-ÉNaÉt ß 1.5 (69)
isfied for bubble growth and bubble dissolution,
respectively. In addition, the inviscid flow approx-for bubble growth. Consequently, from eqs. (67) –

(69) and from the above discussion, it is evident imation can be used for all time when eq. (71)
is satisfied. Finally, eq. (63) can be used for 0that the proposed solution for a viscoelastic liquid,

eqs. (43) and (60), is valid at least for 0 õ ÉNaÉ õ ÉNaÉ ß 1 and for all values of NV for a Newton-
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2100 VRENTAS AND VRENTAS

ian fluid when eqs. (69) and (68) are satisfied for
bubble growth and bubble dissolution, respec-
tively.

DISCUSSION

In the absence of surface tension effects, the bub-
ble growth or bubble dissolution process depends
on the following three dimensionless groups: NE

(elasticity level) , NV (viscosity level) , and Na

(speed of growth or dissolution process). Al-
though there has been a considerable amount of
work on this problem,5–11 important parts of the
parameter space for NE , NV, and Na have not been
considered. For example, Han and Yoo10 obtained
experimental data for bubble growth involving
carbon dioxide in molten polystyrene. For this
system, NV was large (22), NE was very small (2
1 1003) , and ÉNaÉ was of the order of unity (Na Figure 1 Dependence of R1 on dimensionless time
Å 01.22). None of the seven studies cited above for a Newtonian fluid. Numbers on curves are values
considers results for this range of parameters, of NV .
which can be considered to be typical for gas bub-
bles in molten polymers. Street,6 Folger and God-
dard,7 and Papanastasiou et al.8 did not include tonian fluids and then for very viscous, elastic ma-

terials.mass transfer effects, and the article of Barlow
and Langlois5 is limited to Newtonian fluids. In The time dependence of R1 for Newtonian fluids

[defined by eq. (63)] is presented in Figure 1 foraddition, the solutions of Barlow and Langlois,
Han and Yoo,10 and Arefmanesh and Advani11 five values of NV . The results for R1 from this

figure can be combined with eq. (43) to determineare, in the strictest sense, valid only for values of
ÉNaÉ significantly greater than unity since they the effect of viscosity level on bubble growth and

bubble dissolution for any value of Na in the rangeall incorporate the thin boundary layer assump-
tion in their developments. Consequently, six of 0 õ ÉNaÉ ß 1. Results for bubble dissolution for

Na Å 1 are presented in Figure 2 for three valuesthe seven studies are not applicable to typical
cases where ÉNaÉ is of the order of unity or less. of NV, including the inviscid limit (NV Å 0). It is

evident from Figures 1 and 2 that the viscosityThe article by Zana and Leal9 does consider this
range for Na for the case of bubble dissolution, but level can have a very pronounced effect on the

bubble radius–time curve, and there will be sig-the highest value used for NV was 0.1. In addition,
most of the results were obtained using NE Å 10, nificantly slower growth and dissolution in vis-

cous materials than in an inviscid outer fluid.and the lowest value of NE was unity. Hence, most
of the results presented by Zana and Leal are There appear to be no previous results for bubble

growth in Newtonian liquids for small values ofvalid only when elastic effects are rather weak.
The present perturbation solution is valid for ÉNaÉ. Zana and Leal9 presented results for bubble

dissolution in Newtonian fluids for NV ß 0.1.low values of ÉNaÉ(0 õ ÉNaÉ ß 1) rather than
large values, and there is no restriction on either Their results are similar to those presented in

Figure 2, but direct comparison is not possibleNV or NE . Consequently, one contribution of this
article is the consideration of an important part because their time coordinate is normalized using

an unspecified reference time. The present resultsof the parameter space for Na , NE , and NV, which
has not been considered before. A second contribu- are easy to use since either an analytical result

[eq. (63)] or a curve of R1 values (Fig. 1) can betion is the development of an analytical solution
(only a numerical integration is involved) so that utilized. Evaluation of eq. (63) is straightforward

since the integral in this equation has been tabu-numerical solutions of differential equations are
not required. Results are presented first for New- lated (Dawson’s integral) .
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Figure 2 Bubble dissolution for Newtonian fluid with Figure 4 Bubble dissolution for elastic fluid with Na

Å 1 and NV Å 10. Numbers on curves are values of NE .Na Å 1. Numbers on curves are values of NV .

The effect of fluid elasticity on bubble growth growth for small values of ÉNaÉ since previous
(NaÅ01) and bubble dissolution (NaÅ 1) is illus- studies10,11 appear to have incorporated the thin
trated in Figures 3 and 4, respectively. There ap- boundary layer assumption (large ÉNaÉ) . Zana
pear to be no previous results for elastic bubble and Leal9 presented dissolution results for small

Na , but, as noted above, they considered rather
modest levels of viscosity (maximum NV Å 0.1)
and elasticity (minimum NE Å 1). In Figures 3

Figure 5 Dependence of dimensionless bubble radius
on NE for bubble growth with t Å 1, Na Å 01, and NV

Å 10. The solid circle represents the inviscid result andFigure 3 Bubble growth for elastic fluid with NaÅ 01
and NV Å 10. Numbers on curves are values of NE . the open circles represent first-order fluid results.
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in Figures 5 and 6 for bubble growth and bubble
dissolution, respectively. The solid circles in these
graphs are the calculated inviscid values of the
bubble radius at t Å 1 for bubble growth and at t
Å 0.25 for bubble dissolution. The open circles
represent the first-order fluid results for various
values of NE as this parameter is decreased to-
wards zero. These figures illustrate the approach
of the radius–time curves for first-order fluids to
the inviscid limit as NE r 0. It should be noted
that the approach to the inviscid limit as NE be-
comes small is valid for integral viscoelastic mate-
rials, and, therefore, radius–time curves for more
general viscoelastic materials can be estimated in

Figure 6 Dependence of dimensionless bubble radius the limit of high elasticity by simply using the
on NE for bubble dissolution with t Å 0.25, Na Å 1, and inviscid flow approximation. Finally, we present
NV Å 10. The solid circle represents the inviscid result, curves that illustrate what level of elasticity is
and the open circles represent first-order fluid results. needed to have a significant influence on a bubble

dissolution process for different viscosity levels.
The dimensionless bubble radius is evaluated forand 4, very viscous (NV Å 10) and very elastic
a dissolving bubble at t Å 0.05 with Na Å 1 as a(NE Å 0.01) materials are considered. Both these
function of NE for two values of NV, 1 and 10. Thefigures illustrate that the high level of viscosity
results are presented in Figure 7. For the lowerproduces a dramatic decrease in the growth and
level of viscosity (NV Å 1), elasticity will begin todissolution rates in the absence of any fluid elas-
have a significant influence for values of NEticity. As the elasticity level is increased away
less than 10. For the higher level of viscosity (NVfrom the inelastic limit, there is a significant in-
Å 10), elasticity will become important only whencrease in the growth and dissolution rates, and,
NE is less than 1. Not surprisingly, greater elasticat high elastic levels (NE r 0), the radius–time
effects are needed to counteract the influence ofcurves approach the inviscid limit. The addition of
higher viscosity levels. This conclusion is evidentelasticity counteracts the effects of high viscosity.
from examination of the early time solution, eq.More detailed graphs of the approach to the invis-

cid limit for ÉNaÉ Å 1 and NV Å 10 are presented (66). The radius prediction for different values of

Figure 7 Dependence of dimensionless bubble radius on NE for bubble dissolution
with t Å 0.05, Na Å 1, and two values of NV .
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NV is the same when NE is chosen so that the lution, whereas the introduction of elasticity ap-
pears to promote instantaneous expansion or con-product NVNE is kept constant.
traction of a bubble, which overcomes the viscousIt is fair to conclude that there are three contri-
retardation.butions of the present study. First, an analytical

expression is produced for bubble growth and dis-
This work was supported by funds provided by the Dowsolution in Newtonian and viscoelastic materials,
Chemical Company.and utilization of this result is clearly easier than

numerically solving differential equations. Sec-
ond, this article considers an important part of REFERENCES
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